Largest product in a grid
In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 × 63 × 78 × 14 = 1788696.49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
This problem is pretty easy when you will consider the following:
- Multiplication of four numbers up/down is same.
- Multiplication of four numbers right/left is same.
- If you were to split the above matrix which has a size of 20x20 into 4x4 sub matrices and then you should perform the calculations of right/left, up/down and two diagonals
To be frank I first wrote the program to generate 4x4 matrices and then started to find the greatest product, but the logic I missed was that diagonal in a matrix can also be from right to left not only left to right.
Because of this I struggled for more than 2 hours simply rechecking my code. Please don't do this mistake in your case.
To make it a pictorial representation it can be shown as follows:
![]() |
Matrix multiplication right/left |
![]() |
Matrix multiplication up/down |
![]() |
Matrix multiplication diagonal |
Program
I have spent around half an hour to comment this code so that it will be easy for you to understand.
Here goes the program:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#http://radiusofcircle.blogspot.com | |
#time module for execution time | |
import time | |
#Time at the start of execution | |
start = time.time() | |
#Matrix given in the question | |
#I have copied it directly as a string | |
numbers = '''08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 | |
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 | |
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 | |
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 | |
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 | |
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 | |
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 | |
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 | |
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 | |
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 | |
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 | |
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 | |
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 | |
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 | |
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 | |
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 | |
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 | |
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 | |
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 | |
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48''' | |
#As the matrix is in string format | |
#First we are splitting it row wise | |
numbers = numbers.strip().split('\n') | |
#Once split row wise we are splitting it column wise also | |
#We are also converting the | |
#the items in matrix to int using map | |
numbers = [map(int,x.strip().split(' ')) for x in numbers] | |
def greatest_product(a): | |
""" | |
This function will take a matrix as input and then output | |
the largest product that is possible in the Matrix | |
Example: Consider | |
a = [[40, 62, 76, 36], | |
[74, 04, 36, 16], | |
[23, 57, 05, 54], | |
[89, 19, 67, 48]] | |
""ROW WISE CALCULATIONS"" | |
In the first for loop we are calculating the values of | |
40*62*76*36, 74*04*36*16, 23*57*05*54,89*19*67*48 | |
using iterations and then for every value generated | |
we are checking if the value of the multiple is | |
greater than 'largest'. If yes change its value | |
""COLUMN WISE CALCULATIONS"" | |
In the second for loop we are calculating the values of | |
40*74*23*89, 62*04*57*19, 76*36*05*67, 36*16*54*48 | |
and if any of these values is greater than the | |
'largest' value then we will change it. | |
""DIAGONAL CALCULATIONS"" | |
In the third for loop, the diagonal calculations are | |
40*04*05*48, 36*36*57*89. | |
If any of the values is greater than the previous value | |
of 'largest' then it will be changed | |
Finally the value of largest is returned | |
""" | |
largest = 0 | |
for i in a: | |
multiple = reduce(lambda x,y:x*y,i) | |
if multiple > largest: | |
largest = multiple | |
for j in xrange(len(a)): | |
multiple = 1 | |
for k in xrange(len(a)): | |
multiple = multiple*a[k][j] | |
if multiple > largest: | |
largest = multiple | |
multiple = 1 | |
right_dia = 1 | |
for k in xrange(len(a)): | |
multiple = multiple*a[k][k] | |
right_dia *= a[len(a)-1-k][k] | |
if multiple > largest: | |
largest = multiple | |
if right_dia > largest: | |
largest = right_dia | |
return largest | |
#A list to store the values of sub matrices | |
a = [] | |
#For loop for generating sub matrices | |
#Try to understand this by considering a small | |
#example similar to the function above. | |
for i in range(len(numbers)-3): | |
for j in range(len(numbers[0])-3): | |
sub = [] | |
sub.append(numbers[i][j:j+4]) | |
sub.append(numbers[i+1][j:j+4]) | |
sub.append(numbers[i+2][j:j+4]) | |
sub.append(numbers[i+3][j:j+4]) | |
a.append(sub) | |
#Applying the greatest_product function | |
# to all of the sub matrices | |
a = map(greatest_product,a) | |
#printing the biggest number in the list | |
print max(a) | |
#Total time taken for execution | |
print time.time() - start |
If you want to download the above code then you can download it from github gist.
Output
Summary
This problem was not really challenging when compared to the previous problems. This problem was also easy if you hadn't missed that there are two diagonals in a matrix.
I haven't explained the code because it is well commented and also I think you can consider it as an exercise to understand the program so that you can improve your programming skills. But if you have any doubt or didn't understand anything then please do comment in the comment box below and I will be glad to help you.
Please do comment if I have made any typo or if you have a better/different program excluding the above program. Also comment if you want me to add any extra thing to this post, which will help the community.
You can also contact me if you want to.
Thank you. Have a nice day😃.