Skip to main content

Problem 32 Project Euler Solution with python

Pandigital products

We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital.
The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital.
Find the sum of all products whose multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital.
HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.

Even though I have written the correct code I didn't get the correct answer. The answer lies in the question. Read on to understand why?

One might consider that we will have to loop till 987654321 and then find all the pandigital numbers. Then find if any part of the number will form the product of the other two parts. While this might be a case, but looping 987654321 times is not really necessary. Even if you will loop these many times and find the numbers, then you would end up getting a list of 362880(9!) numbers for which you will have to do the same. We can scale down the number of times we will loop.

Instead of looking at the problem from the first sentence(in the question) point of view, lets look at the problem in the second sentence(in question) point of view. Now to form a nine digit there are many ways. But to get, the length of two numbers combined with their product to be 9 we only have few options. Mathematically we can write it as:

len(a)+len(b)+len(a*b) = 9

To get the above we only have few options.

Also to not repeat the same combination we can still reduce the number of ways.

Lets consider that a will take 1 digit then b will take 4 digit number to get another 4 digit number, to sum up to 9.

Consider a taking 2 digit number, b will take 3 digit number to get 4 digit number again.

Consider a taking 3 digit number, then b should take 2 digit number to get 4 digit number again.

Consider a taking 4 digit number, then b should take 1 digit number to get 4 digit number.

If you have seen, the last two sentences(in the above sentences) can be eliminated because they are a similar repetition of the first two sentences.

Also if the length of two number and their product increases 9 then we can stop multiplying with other numbers because the value is just going to increase instead of decreasing.

For example consider that we will have to form a single digit number as the product. Even though we are not exactly going to consider pandigital numbers this example is for understanding the above problem

My loop is running through 3 now(say), and the limit for my second loop is 5(say), then the looping will go on like this
3 x 1 = 3
3 x 2 = 6
3 x 3 = 9
3 x 4 = 12
3 x 5 = 15

4 x 1 = 4
4 x 2 = 8
4 x 3 = 12
...

In the above looping process after I had seen that the number 12 is a two digit number, and if I have breaked the loop there itself, then we would have saved one iteration. Obviously as we are using python even though you will break from one loop another loop will be working. If you break the loop at 12(3 x 4) then we will again start at 4 x 1 = 4 and so on. Now in this we will break at 12(4 x 3) again.

Using the above technique we can reduce the number of iterations by almost 80% percent. This is what had been translated to python in the program. Hope you have understood the concept.

Program

And yes I have looped separately for a two digit multiplicand and for a single digit multiplicand to avoid unnecessary iterations.

Also as the question states not to add the same product twice to get the solution, I have used python sets to eliminate duplicates.

As always you can download the source code from Github Gist pep32.py.

Output


Summary

This problem was very simple, but had a very good twist in the question. It also tested us whether we would be using the first statement or the second statement to get the answer. Anyways I am satisfied with this optimized code which had a very good performance and ran in less than 0.1 second. I think still there is a scope for improvement.

If you have any doubt or didn't understand anything then comment in the comment box below and I will be glad to help you.

Please do comment in the comment box below if you have found any typo or have a different or better program or have any suggestions. I will be glad to view each of them.

You can also contact me.

Thank you. Have a nice day😃.

Popular posts from this blog

Problem 60 Project Euler Solution with python

Prime pair sets The primes 3, 7, 109, and 673, are quite remarkable. By taking any two primes and concatenating them in any order the result will always be prime. For example, taking 7 and 109, both 7109 and 1097 are prime. The sum of these four primes, 792, represents the lowest sum for a set of four primes with this property. Find the lowest sum for a set of five primes for which any two primes concatenate to produce another prime. This problem is j u st a brute force problem. If you have come here because you don't know the limit upto which you will h ave to gener ate the prime numbers t hen go ahe ad and t r y with 10,000 . When I first start ed solving the problem I chose 1 million(beca use most of the problem s on project E uler have this limit ), but it took very long for the computer to fin d the solution. After searching on the internet then I found many people choosing 10, 000 so I have changed my in put f rom 1 million to 10000 and the output was f ast. He

Add/Embed SVG to Blogger website

In this post I will tell you my method(trick) of adding SVG images in a blogger website or blog. Before starting , the first thin g I am assu m ing is that you are aware of SVG if you are here. If not please see S calable V ec tor G raphics Recently when I tried to embed a SVG image for a post on pygal, I tried uploading the SVG file and blogger Image uploader came up with an error, because of which I had to find some other way.  SVG File upload Error in Blogger  I started sea rc hing Google " Embed SVG in Blogger " . I found blogorrhea , w h ich gave some i nformatio n on add ing SVG directly as a markup , which worked , but I faced another problem using this . Also th is guy has used lot of Javascript which was confusin g for me, being new to using SVG.   So I first t houg ht of learning on h ow to embed SVG in HTML and t his on e worked out. Actually we can embed SVG in HTML i n following ways: Using Object tag Using Iframe tag Using embed tag Us

Making a quiz web app with python and flask

Edit : When you are creating a web app with h tml templates, then y ou will have to sa ve the html file in templates folder in the Current Wor ki ng Directory( CWD). If you save the file in the C W D directl y you will get a TemplateNotFound error. Thank you Udhay for pointing it out.   In this post we will create a quiz website using python . I will be using the flask framework . After reading this tutorial you will learn form submission , flask templates , python code in flask templates , shuffling the questions and options with the random module and few others.  Please note that this tutorial is not big as it seems to be. Some of the code has been rewritten to maintain consistency and also font size is somewhat big so that your eyes won't get stressed reading this tutorial. Also the content has not occupied the full width of the page. In this tutorial I am assuming that you are having a very basic understanding of the flask framework . Please refer the documentation